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Thomas Schlömer,1 Benjamin Poppinga,1 Niels Henze,2 Susanne Boll1

1University of Oldenburg 2OFFIS Institute for Information Technology
{firstname.lastname}@uni-oldenburg.de niels.henze@offis.de

ABSTRACT
In many applications today user interaction is moving away
from mouse and pens and is becoming pervasive and much
more physical and tangible. New emerging interaction tech-
nologies allow developing and experimenting with new in-
teraction methods on the long way to providing intuitive hu-
man computer interaction. In this paper, we aim at recogni-
zing gestures to interact with an application and present the
design and evaluation of our sensor-based gesture recogniti-
on. As input device we employ the Wii-controller (Wiimo-
te) which recently gained much attention world wide. We
use the Wiimote’s acceleration sensor independent of the ga-
ming console for gesture recognition. The system allows the
training of arbitrary gestures by users which can then be re-
called for interacting with systems like photo browsing on
a home TV. The developed library exploits Wii-sensor data
and employs a hidden Markov model for training and reco-
gnizing user-chosen gestures. Our evaluation shows that we
can already recognize gestures with a small number of trai-
ning samples. In addition to the gesture recognition we also
present our experiences with the Wii-controller and the im-
plementation of the gesture recognition. The system forms
the basis for our ongoing work on multimodal intuitive me-
dia browsing and is available to other researchers in the
field.
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INTRODUCTION
In recent years, we find more and more affordable hardware
that allows the development of multimodal user interfaces.
Recently one of these interfaces is the so called Wiimote [1],
the device that serves as the wireless input for the Nintendo
Wii gaming console. The Wiimote can detect motion and ro-
tation in three dimensions through the use of accelerometer
technology. Separating the controller from the gaming con-
sole, the accelerometer data can be used as input for gesture

Figure 1. The Wii Controller (Wiimote).

recognition. In our work, we address the recognition of ge-
stures for new multimodal user interfaces. We are interested
in recognizing arbitrary gestures of users that are performed
by one hand. We choose the Wiimote as our input device for
its ease of use, the hardware price and the design.

Accelerometer-based gesture recognition has been discussed
in many publications, most prominently in those by Hof-
mann et al. in [4] and most recently in those by Mäntyjärvi et
al. in [6] and [7]. Like the commercial work by AiLive Inc.
(cf. [2]) we aim for a system allowing the training and re-
cognition of arbitrary gestures using an accelerometer-based
controller. In doing so we have to deal with spatially as well
as temporally variable patterns and thus need a theoretical
backbone fulfilling these demands. We transfer the methods
proposed in [6, 7] who are using special hardware for 2D
gesture recognition to the consumer hardware of the Wii-
mote and recognize 3D hand gestures. With the controller
the user can make her own, closed gestures and our gesture-
recognition aims at a Wii-optimized recognition. Our com-
ponents as well as the filtering process is specifically targe-
ted to the Wiimote. With this paper we also share our expe-
riments and the resulting implementation with other resear-
chers.

CONCEPT
In gesture recognition using an acceleration sensor, gestures
are represented by characteristic patterns of incoming signal
data, i.e. vectors representing the current acceleration of the
controller in all three dimensions. Hence, we need a system
pipeline preparing and analyzing this vector data in order
to train as well as recognize patterns for distinct gestures.
For this purpose we revert to the classic recognition pipeline
shown in Figure 2. It consists of the three main components
quantizer, model and classifier.
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Figure 2. Components of our recognition system. We use a total of two
filters before following a traditional pipeline like [7]. The quantizer ap-
plies a common k-mean algorithm to the incoming vector data, for the
model a left-to-right hidden Markov model is used and the classifier is
chosen to be a bayesian.

As an accelerometer constantly produces vector data we first
need a quantizer clustering the gesture data. Here, a common
k-mean algorithm (cf. e.g. [5]) is applied. The model has be-
en chosen to be a discrete hidden Markov model since it of-
fers a long history in the service of gesture recognition and
promises to deliver reliable results for patterns with spatial
and temporal variation (cf. e.g. [4]). The remaining compo-
nent is a classic Bayes-classifier. In addition to these main
components we establish two filters for pre-processing the
vector data, an “idle state” and a “directorial equivalence”
filter. Both serve the purpose to reduce and simplify the in-
coming acceleration data.

As we want optimize the HMM for the task of an accele-
rometer based gesture recognition we select the reference
gestures shown in Figure 3 during the following tests and
evaluations. With regard to the components of the classic
gesture recognition approach in Figure 2 we identify three
components for analysis and improvement: vector quantiza-
tion, the concrete hidden Markov model and filters.

Vector quantization
Like other acceleration-sensors the one integrated into the
Wiimote delivers too much vector data to be put into a single
HMM. In order to cluster and abstract this data the common
k-mean algorithm is applied with k being the number of clu-
sters or codes in the so-called codebook. Since k must be
determined empirically we decided to conduct tests to find
a codebook size delivering satisfying results and as we are
evaluating true 3D gestures we cannot rely on previous re-
sults by Mäntyjärvi et al. who empirically identified k = 8
for gestures in a two-dimensional plane. However, we adopt
their idea of arranging the 8 cluster centres on a circle by
extending it to the 3D case. Instead of distributing the cen-
tres uniformly on a two-dimensional circle we put them on a
three-dimensional sphere, intersecting two circles orthogo-
nal to each other (cf. Figure 4). Consequently this leads to
k = 8 + 6 = 14 centres. For comparison, we also enhan-

(a) Square (b) Circle (c) Roll (d) Z (e) Tennis

Figure 3. Reference Gestures. The gesture in (b) does not show a star-
ting point because the gesture might start anywhere on the circle. Ge-
sture (c) describes a 90◦-roll around the z-axis (forth and back) and
gesture (e) symbolizes the serve of a regular tennis match: raising the
controller and then rapidly lowering it in a bow-curved manner.
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Figure 4. Distribution of the cluster centres during quantization for k ∈
{8, 14, 18}. We extrapolate from the two-dimensional case for k = 8
with a simple circular distribution to a three-dimensional using two
orthogonal circles for k = 14 to another three-dimensional using three
orthogonal circles for k = 18 and evaluate which of them results in the
most reliable behavior.

ced the spherical distribution to include another four centers
on the XZ-plane and thus gain k = 18 cluster centres. The
radius of each circle/sphere dynamically adapts itself to the
incoming signal data.

We conducted a small evaluation comparing the three set-
tings shown in Figure 4 using the reference gestures from
Figure 3. We found that for k = 8 the recognition process
cannot clearly differentiate between the five reference gestu-
res. Since the gestures explore all three dimensions, laying
out the centres on a two dimensional plane is not sufficient.
With k = 14 the probabilities for the respective gestures
improve as expected and the model can clearly distinguish
between the five gestures. Using k = 18 results in “over-
trained” HMMs, do not improve the probabilities and slow
down performance. Consequently we choose k = 14 with
the distribution shown in Figure 4(b).

Hidden Markov Model
In our system a HMM is initialized for every gesture and
then optimized by the Baum-Welch algorithm (cf. [3]). Ho-
wever, there are two competing HMM instances we might
revert to: a left-to-right vs. an ergodic. While [4] claims that
both approaches deliver comparable results, [9] states that a
left-to-right model is clearly to be preferred when the inco-
ming signals change over time. We implemented both mo-
dels and ran a test to determine which model better suits our
needs. Table 1 shows the results for both possible instances
and a varying number of states. Our results confirm the state-
ment by [4] that no instance is significantly better than the
other as well as the statement by [8] that the influence of the

Square Circle Roll Z Tennis
5 states

left-to-right 9.87 · 10−24 2.34 · 10−18 2.56 · 10−20 6.79 · 10−65 4.1 · 10−61

ergodic 8.11 · 10−20 5.86 · 10−23 1.96 · 10−21 8.86 · 10−72 7.42 · 10−67

8 states
left-to-right 2.28 · 10−22 7.86 · 10−16 7.42 · 10−21 6.24 · 10−62 3.17 · 10−56

ergodic 9.45 · 10−26 6.93 · 10−23 2.38 · 10−21 1.11 · 10−71 9.56 · 10−67

10 states
left-to-right 1.49 · 10−21 1.59 · 10−14 4.6 · 10−21 2.63 · 10−60 5.3 · 10−54

ergodic 1.02 · 10−25 7.55 · 10−23 2.64 · 10−21 1.25 · 10−71 1.09 · 10−66

Table 1. Model probabilities for left-to-right and ergodic HMM with
varying number of states. Our evaluation confirms the statement by
[4] that neither the number of states nor the concrete HMM instance
influence the results all too much.
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number of states is rather weak. In the end we chose our mo-
del to be a left-to-right HMM with 8 states for convenience.

Filtering
Before the actual recognition process our system applies two
filters to the vector data establishing a minimum representa-
tion of a gesture before being forwarded to the HMM for
training or recognition. The first filter is a simple threshold-
filter eliminating all vectors which do not contribute to the
characteristic of a gesture in a significant way, i.e. all ~a for
which |~a| < ∆. We call this filter the “idle state filter” and
determined ∆ to a value of ∆ = 1.2g, g being the accelera-
tion of gravity. The second filter is called “directorial equi-
valence filter” and eliminates all vectors which are rough-
ly equivalent to their predecessor and thus contribute to the
characteristic of a gesture only weakly. Vectors are omitted
if none of their components c ∈ {x, y, z} is all too different
to the corresponding component of their predecessor, i.e. if
|~a(n)

c − ~a(n−1)
c | ≤ ε for all c. ε was chosen to be 0.2 in the

case of the Wiimote.

As Figure 5 shows, this filter would ideally lead to just four
characteristic acceleration vectors in the case of the gesture
“square”. In addition, Figure 6 demonstrates the reduction
of the number of vectors for every reference gesture after
applying both filters.

(a) Before filtering (b) After filtering

Figure 5. Effect of the directorial equivalence filter. Applying it would
ideally lead to just four acceleration vectors for the gesture Square.
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Figure 6. Reduction of vector data during filtering. The first bar for
each gesture represents the average number of vectors after applying
the first filter (“idle state”), the second bar the average number of vec-
tors after applying the second, the “directorial equivalence” filter. As
one can see the number of vectors are heavily reduced by this process
which leads to more reliable as well as faster recognition results.

IMPLEMENTATION
In our prototype we use the Nintendo Wiimote Wireless
Controller with an integrated three axis acceleration sensor
(Analog Devices ADXL330). Since the Wiimote is designed
for human interaction with the Wii-Console it provides the
ability for basic in-game gesture recognition. Connected via
the Bluetooth Human Interface Device (HID) protocol it is
possible to readout its self-description data. The meaning of
this communicated data has been reverse engineered by the
open-source community.1 Based on these findings it is pos-
sible to establish a basic communication with the Wiimote.

We implemented the gesture recognition in Java using the
standardization of Java APIs for Bluetooth Wireless Tech-
nology (JABWT) defined by the JSR-82 specification. Using
Java ensures platform independency, for developing and te-
sting purposes we use the GNU/Linux platform with the
Avetana Bluetooth implementation.2

The recognition process is realized as a reusable and extensi-
ble gesture recognition library based on an event-driven de-
sign pattern. The library provides an interface for basic func-
tions, e.g. acceleration readout with the WiiListener in-
terface, as well as recognition functions using a Gesture-
Listener interface. Through its modularity it is easy to
adapt our prototype to other acceleration-based controllers.
We make the library available to other researchers in the
field.

EVALUATION
In order to determine the performance of our system we con-
ducted an evaluation. We collected quantitative data to de-
termine the percentage of correctly recognized gestures for
gestures trained by users themselves. In order to make the
results comparable among the individual participants the fi-
ve gestures described in Figure 3 were used by all partici-
pants. The group consists of one woman and five men aged
between 19 and 32 years. All participants had some minor
experience with the Wiimote and none used the Wiimote re-
gularly. None of the participants was physically disabled.

Preparing the evaluation we set up our environment and the
Bluetooth connection to the Wiimote. The participants got a
brief explanation of the purpose of the system and how to in-
teract with the Wiimote. Afterwards we introduced the five
gestures using drawings of the five gestures (see Figure 3)
and demonstrated the execution of the first gesture Square.
Each participant was asked to perform each gesture fifteen ti-
mes resulting in 75 gestures per participant. The participants
had to push and hold the A-button on the Wiimote while
performing gestures. After each completing of the respective
fifteen gestures the user had to press the Wiimote’s HOME-
button and the drawing of the next gesture was shown. Each
session lasted for fifteen minutes on average and the parti-
cipants received no feedback from the system. During the
evaluation we stored the complete raw data transmitted by
the Wiimote.
1E.g., www.wiili.org
2www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
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Figure 7. Participant during the evaluation of the gesture recognition.

To analyze the determined results we trained the gesture re-
cognition system with the collected data. The system was
trained using the leave-one-out method to make sure that the
models were evaluated on sequences that were not used for
training. That means for each participant fifteen training sets
each containing the five gestures were computed. These trai-
ning sets were used to recognize the remaining five gestu-
res. The average rate of correctly recognized gestures was
90 percent. The averaged recognition rate for each of the fi-
ve gestures is shown in Figure 8. The averaged recognition
rate for the six participants is shown in Figure 9.
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Figure 8. Average recognition rate of the five gestures. The results for
the five gestures were Square = 88.8%, Circle = 86.6%, Roll = 84.3%,
Z = 94.3%, and Tennis = 94.5%.

CONCLUSION
Developing new intelligent user interfaces involves experi-
mentation and testing of new devices for interaction tasks.
In our research, we are working in the field of multimodal
user interfaces including visual, acoustic and haptic I/O. Ba-
sed on the Wiimote we developed a gesture recognition that
employs state of the art recognition methodology such as
HMM, filters and classifiers, and aim to optimize hand ge-
sture recognition for the Wiimote. As the gestures can be
user-chosen the system is not limited to predefined gestu-
res but allows each user to train and use individual gestures
for a personalized user interaction with gestures. To be ab-
le to measure recognition results we trained and evaluated
the system based on a set of reference gestures taken to be
relevant for different task such as gaming, drawing or brow-
sing. The recognition results vary between 85 to 95 percent,
which is promising but leaves room for further optimizati-
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Figure 9. Average recognition rate of the four users. The results for the
six participants were 84.0%, 87.8%, 87.8%, 92.0%, 93.4%, and 93.4%.

on of the model and filters. We make the implementation of
the gesture recognition library publicly available3 and as the
Wiimote is a low-cost device we invite other researchers to
extend and share their experiences.

REFERENCES
1. Nintendo. http://wii.nintendo.com

2. LiveMove, AiLive Inc.
http://www.ailive.net/liveMove.html.

3. Baum, L.E. and Petrie, T. Statistical inference for
probabilistic functions of finite state Markov chains.
Annals of Mathematical Statistics, (1966), 1554-1563.

4. Hofmann, F., Heyer, P. and Hommel, G. Velocity Profile
Based Recognition of Dynamic Gestures with Discrete
Hidden Markov Models. Proc. of the International
Gesture Workshop on Gesture and Sign Language in
Human-Computer Interaction, Springer London (2004),
81–95.

5. MacQueen, J. B. Some Methods for classification and
Analysis of Multivariate Observations. Proc. of 5-th
Berkeley Symposium on Mathematical Statistics and
Probability, University of California Press 1967,
281-297.

6. Mäntyjärvi, J., Kela, J., Korpipää, P. and Kallio S.
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