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Abstract

Notifications are important means to attract the user's attention on a mobile device, e.g.,
if a text message is received. Today's smart phones issue the notification immediately
after an event occurred and then repeat unanswered notifications in fixed time intervals.
The disadvantage of this issue and repeat strategy is that notifications can appear in
inconvenient situations and are therefore perceived as annoying and interrupting. In
this paper, we study what the mobile context as inferred through a phone's sensors for
both, answered and ignored, notifications looks like. To do so we conducted a large-
scale, longitudinal study via the Google Play store and observed 6581 notifications from
79 different users over up to 76 days. A derived model is able to predict opportune
moments to issue notifications with a reasonable accuracy of about 77 %. We argue that
our findings can lead to intelligent strategies to issue unobtrusive notifications on
today’s smart phones at no extra cost.
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Introduction

Today's smart phones often use notifications to attract the user's attention on the device
to indicate that something more or less important has happened. Typical reasons for a
notification are, e.g, an incoming text message or a set reminder. While some
notifications have informatory reasons, e.g., an available application update, and can be
handled with delay, most notifications require immediate user attention and action. For
this reason, most notifications are presented in an obtrusive way, e.g., by visual screen
appearance, short vibration, and by flashing an LED. If not attended, some notification
reminders are repeated.



It is undoubtedly valuable to have means like notifications to quickly reach the user.
However, the existing issue and repeat strategy can be quite obtrusive and annoying as
notifications and their repetitions might occur in inconvenient situations like at night
time or when driving a car. These unwanted notifications often lead to stress, increased
frustration, time pressure and effort [1]. Creating context-awareness by modeling the
user’s interruptibility has been proposed to be a solution to this problem [2]. The idea is
that a context-aware phone somehow identifies if it is appropriate to trigger a
notification and thereby reduce obtrusiveness. While it has been shown that such
opportune and non-disruptive moments can be reliably identified for workers on
stationary desktop computers in [2, 3], research is still ongoing for mobile and dynamic
outdoor scenarios.

In this paper, we investigate in which contexts mobile notifications are typically
attended or not. To study this behavior we designed MoodDiary, a mobile diary
application for mood tracking, and distributed it via the Google Play store. A resulting
model, which we derived from our collected 6581 total notifications from 79 users, is
77.85 % accurate in predicting opportune moments to issue notifications. In contrast to
earlier work, our observations are made in real life, in the wild and over a long period of
time, which results in high external validity and broad applicability of our findings. We
argue that our insights can help designers and developers of mobile software to trigger
notifications in less disruptive moments. Users will probably benefit from stress
reduction and a productivity boost.

Related Work

Interruptions distract humans from their ongoing activity by introducing new tasks. It is
differentiated between internal interruptions, i.e., those that appear in our own thought
process, and external interruptions, those that have their cause in the environment [4].

With technological advance there are more and more machines touting for our attention,
causing external interruptions. Because machines are insensitive to whether a human is
able to attend a notification or not [5], active interruption management is needed. In
theory four design solutions to cope with interruptions were identified: immediate,
negotiated, mediated, and scheduled interruption [6]. Mediated interruptions use
indirect information, e.g., a human's digital calendar or environmental sensors, and are
recognized among the less interruptive techniques [7].

While there are many factors that influence a person's interruptibility, e.g., social
engagement, literature found the user activities to be very relevant. Interruptions
between coarse breakpoints, i.e, major changes in the work flow, produce less
annoyance and users assessed them as being more respectful to their ongoing activity
compared to other, e.g., random moments [8, 9]. To detect and differentiate between
these breakpoints in interactive tasks, models can be created. Such models for stationary
computers in office contexts reach an accuracy of up to 78 % [3].

However, in comparison to stationary computers, mobile devices are used in much more
dynamic ways and in by far more complex contexts. Fischer et al. argue that the endings
of mobile interactions, like making phone calls and receiving SMS, denote a coarse
breakpoint and are opportune moments to attend notifications. They found that a user
deals with a notification more quickly if it is triggered at coarse breakpoints. Further,



they found that the type of task has a significant effect on acceptance time and
completion rate. Despite the triggering in coarse breakpoints, some users still noted that
notifications and subsequent tasks were annoying in certain situations [10].

Instead of using user-entered and phone-specific information, like a received SMS, also
sensors could be used to identify opportune moments. Ho and Intille used two
accelerometers and activity recognition to trigger interruptions at moments when user
changes activity, e.g., from sitting to walking [11]. They showed that users are
significantly more receptive to interruptions compared to a random condition. Kern and
Schiele used wearable accelerometers, audio, and location sensors to decide whether a
user should be notified and which modality to use. They argue that no advanced model
is needed, as the combination of tendencies is already sufficient [12].

In contrast to earlier research, we ground our research on sensors and technologies that
are available in today’s commercial mobile phones. Earlier work [3, 10, 11] studied
about 20 users for a maximum of 14 days, whereby they investigated a maximum of
2000 notifications and achieved quite artificial response rates of up to 90 %. In contrast,
we investigate the users' behavior in a large-scale, longitudinal study. We studied 79
users over up to 76 days and investigated 6581 notifications. Thereby we reach a
practical response rate of about 23 %. We argue that our findings have a high external
validity and their application can lead to a significant reduction in notification
obtrusiveness.

Concept

In this paper, we study the contexts in which notifications are considered and in which
they are rejected or ignored by the user. To do so we design an application, which logs
the context a user is in when a notification is triggered and if this notification is
answered or rejected. We will use the gathered data to develop a predicting model on
what are opportune moments to issue a notification in mobile contexts.
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Figure 1: The process how a notification is issued and answered consists of six steps. In each of the steps that
require user interaction a notification can be rejected. In both cases, answering and rejection, the context
information are transferred to our servers (Step 6).

Context Observation Approach

A critical decision to make is which information should be considered in the to-be-
created predictive model. Previous work used either user-entered information, like
calendar entries, or sensor data. User-entered information has heterogeneous levels of
availability and quality, as it might be sloppily maintained and is therefore incorrect or
outdated. Further, this information is personal and users might not want to share it with



an unknown application or third party. In contrast, sensor data is homogeneous as most
smart phones come with similar sensing capabilities and the measured values are often
normalized and well defined.

Consequently, we follow the sensor-based context observation approach as we think
this is more reliable and promising. Our approach incorporates sensors which are
available in nowadays smart phones: GPS, accelerometer, gyroscope, compass,
microphone, and a proximity sensor. These sensors can obtain various measures, which
can be used to observe various aspects of the users' notification answering behavior. In
fact, the recorded context features are: timestamp, location provider, position accuracy,
speed, GPS heading, compass heading, roll, pitch, proximity, and light level. We neither
collected location information nor assessed the microphone for ethical reasons.
Although we use state of the art sensors, we want to emphasize that these can only
observe a tiny fragment of what makes a holistic mobile context.

Apparatus: MoodDiary

To collect context information and trigger notifications on the users' mobile phones, we
needed an apparatus. For our study we decided on a self-tracking application, which
tracks the user's mood at regular intervals via notifications. This decision is based on the
fact that a human's mood can change frequently over a day, which justifies short
intervals between notifications. Basically, any notification-triggering application could
be used for this research; actual mood assessments are not relevant for this paper and
will not be presented or discussed.

The application is called MoodDiary, runs on Android, and is separated into two parts.
The first part is a background service that regularly triggers notifications and asks the
users to assess their current mood. The second part is an activity that provides an
overview of all mood assessments and thereby creates an actual value for the user. We
paid attention that the application is of good quality, stable, and reliable. We created an
appealing logo and application description to attract many users. The application
description makes the user aware that it collects anonymous sensor information for
study purposes.

Trigger New Notifications

The background service triggers a new mood assessment notification at regular
intervals of about three hours and fifteen minutes. The regular sampling strategy is
realistic for such an application and eventually allows us to cover a whole day. The
service runs continuously and automatically restarts on phone reboots. For study
purposes the service invisibly infers the user's context 15 seconds before the actual
notification is triggered (see Figure 1, Step 1). After context gathering, a snapshot of the
context is taken and the actual notification is shown, which basically looks and behaves
similar to, e.g., traditional SMS notifications (see Figure 1, Step 2 and Step 3). The
notification takes the phone profile into account, i.e., no audio alert is played if the phone
is muted. A user can either answer a notification or reject it. After one minute the
notification is automatically dismissed and will no longer be shown in the notification
bar.

If a user opens a notification, a sequence of two dialogues comes up (see Figure 1, Step 4
and Step 5). Those dialogues consist of a statement at the top and a 5-point Likert scale
in the middle, which ranges from strongly agree to strongly disagree. The first dialogue
gives a statement about a certain mood. The supported mood types are based on



findings of Charles Darwin and Paul Ekman: angriness, fearfulness, happiness, sadness,
how disgusted and how surprised someone feels. Thus, a possible first statement could
be “I feel surprised”. The second statement assesses the inquiry's obtrusiveness: “The
previous inquiry was obtrusive”. After the user clicks the OK button in the second
dialogue, the dialogue disappears and the assessment is stored in a local database.

Independently of whether a notification was attended or not, we log information to our
servers (see Figure 1, Step 6). We log the inferred context information (as described
earlier), if a notification has been answered, the mood type, the given answer, and the
rated obtrusiveness of each inquiry. We further log information like the device type, the
set locale etc. All information is collected anonymously with the users consent.

Value for the User: Overview of Mood Assessments

Beside the background service, the application also provides an activity that shows
earlier assessments. This activity is decoupled from the background service and consists
of two tabs. The first tab contains a list of all answered or rejected inquiries. Each list
element shows which mood type was asked for, if this inquiry was answered, how the
user self-assessed his mood and how obtrusive this inquiry was rated. The second tab
provides the user with graphs how the individual mood types have changed over time.
However, this part of the application is not of relevance for this paper.

User Study

We released the MoodDiary application, to the Google Play store in March 2012 and did
our analysis six month later. In the following, we investigate the data from two
complementary perspectives. First, we present the most relevant descriptive statistics in
which contexts a notification is typically attended or ignored. Second, we create a model
to predict opportune moments and investigate its performance.

Results: Statistics

The application was installed by 314 users over a period of five month. Overall 15926
issued notifications were recorded by our server. To exclude users that installed the
application without really using it, we applied a filter. We excluded all users that used
the application less than 1 day and had an answering rate, i.e., ratio between answered
and issued notifications, of less than 10 %. After filtering, a set of 79 users and 6581
issued notifications remained.

About two thirds of the 79 contributing users had an American time zone (GMT/-4 to
GMT/-9). Further, 73 users (92.40 %) had set an English locale. Of the 6581 total
notifications 1508 were answered and 5073 were not answered, which results into an
overall answering rate of 22.91 %. On average, each user was confronted with 83.3
notifications (SD 108.30, median 36.0), of which 19.09 (SD 23.09, median 8.0) were
answered. These results indicate that almost every fourth notification is answered. The
application was used between 1.01 and 76.63 days, which is about 11.01 days (SD 14.87,
median 4.74) on average.



Answer Rate over Time
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Figure 2: Despite a major drop to 8 % at night times the answer rate is more or less increasing constantly,

ending in a global maximum of about 30 % in the evening hours. For outdoor notifications we observed some
local minima, which can most likely be credited to commuting.

Time of Day

We were able to collect equally distributed data for the time of day (skewness s=0.42,
excess kurtosis k=-0.72). In the following, we investigate if the time of day has an effect
on the notification answering behavior. We found that only 0.08 % of the notifications
are answered at around 04:24, and 0.31 % are answered at 22:18 (see Figure 2). In
relation to all sampled notifications this answering behavior is skewed to the right, i.e.,
towards the evening (s=-0.61, k=-0.68). The mean time for answered notifications is
14:16 (SD 06:36, median 15:06), the time for unanswered notifications is 12:12 (SD
07:00, median 12:22). A Welch-adapted two-tailed Student t-test indicates that this
difference is significant (p<0.01). We interpret these statistics in a way that people
mostly attend notifications in the later hours of the day.

Location Provider

The location provider can give insights whether the user is situated indoors or outdoors,
as a GPS location is most likely to be inferred only in outdoor situations. Consequently,
we split our data into an indoor data set (no location information and network location)
and an outdoor data set (GPS locations only). We observed 5953 (90.46 %) indoor and
628 outdoor notifications. For both settings the distribution of observed notifications
looked similar, i.e., less notifications at night (see Figure 2). However, for outdoor
notifications we identified noticeable local minima throughout the day, which probably
can be credited to commutes (09:00 and 17:30) or going for lunch (13:00). 1352
(22.71 %) of the indoor notifications and 156 (24.84 %) of the outdoor notifications
were answered. A Chi-squared test indicated that there is no significant difference
(x?=1.12, p=0.29). Thus, we cannot argue that outdoor notifications were answered
more likely than indoor notifications or vice versa.



Position Accuracy

Similar to location, the position accuracy can indicate whether a user was located
outdoors or indoors when attending or ignoring a notification. The average position
accuracy for answered notification is 851.02 m (SD 1174.14 m, median 96 m), whereby
itis 1017.41 m (SD 1219.38 m}, median 672 m) for ignored notifications. This difference
is significant (p<0.01).

Answer Rate for Device Posture
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Figure 3: About every second notification is answered if the device is pitched towards the user. 50 % of all
answered notifications have a pitch angle between -0.50° and -55.93°.

Device Posture

Roll and pitch angles, which we both recorded for each notification, can be used to
estimate the device posture. Roll represents the left/right tilt of the phone, and pitch
indicates the up/down tilt. The posture could give indications on how the phone was
located, e.g., lying flat on a table, when a notification was answered. The average pitch
angle for answered notifications was -31.82° (SD 53.58° median -28°), while it was -
10.89° (SD 67.51°, median -0.39°) for ignored notifications. A t-test showed that this
difference is significant (p<0.01). The roll angle for answered notifications was 0.31° (SD
22.42°, median 0°), for unanswered 2.20° (SD 22.28° median 0.02°). This difference is
also significant (p<0.01).

A visualization of the answer rate over roll and pitch (see Figure 3) showed that the
answer rate is about 26.46 % for almost any roll angle. However, for pitch a major peak
at around -64° could be observed, where 52.58 % of all notifications were answered.
That means that more than every second notification is answered if the device is tilted
towards the user by about 60 %. Interestingly, these pitch angles are representatives for
how a device is typically held in a user's hand [13, 14].



Proximity

The proximity sensor indicates whether the display is covered by something or not,
which is typically used to avoid unintended touch interactions, e.g., during a phone call.
However, it can also be used to understand where a phone is probably located, e.g., the
sensor is covered in a pocket and not covered in the users hand. 1332 (88.26 %) of the
answered and 3816 (75.22 %) of the unanswered notifications came with the
information that the display was not covered. A Chi-square test indicated that there is a
relation between the facts that a notification was answered and that the proximity
sensor was covered (%?=116.48, p<0.01). Thus, the display was more likely to not be
covered for answered notifications.

Heading, Speed, and Light Level

The headings for answered notifications were 54.46° (GPS, SD 102.60°) and 176.89°
(compass, SD 111.82°) and for ignored notifications 55.82° (GPS, SD 98.42°) and 170.65°
(compass, SD 107.67°). The speed had a notable variation, but a median of 0.00 m/s for
answered and unattended notifications. The median light level for answered notification
was 4.09 lux and for ignored notifications 4.00 lux. None of these differences were
significant, so we cannot conclude anything.

Data Mining

Beside the statistical investigation of individual measures we processed the obtained
data in Weka, a tool for data mining. We wanted to create a classifier, which ideally will
be able to predict, based on sensor data, if it is likely that a user will answer an inquiry
or not.
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Figure 4: The resulting C4.5 decision tree consists of 20 elements and 11 leaves. It allows to classify whether a
notification should be issued (true) or not (false) with an accuracy of 77.85 %.

We investigated different classification algorithms, which we provided with nine
attributes to build the model, i.e., location provider, position accuracy, speed, roll, pitch,
proximity, time, light level, and whether the request was answered. The full set of 6581
notifications was used to train the classifiers and we used a ten-fold cross-validation
procedure for evaluation. We used a trivial classifier as baseline, which predicted that
each element belongs to the largest class in the sample, i.e., false, and thereby reached an
accuracy of 77.08 %.

Our empirical investigation showed that the tree-based C4.5 classifier (see Figure 4)
performed best and classified 5114 of the given 6581 notifications (77.85 %) correctly.
The precision of the classifier was 0.74 and recall was 0.78. We got 257 true positives,
207 false positives, 1251 false negatives, and 4866 true negatives. This showed that
particularly situations where the user would actually answer a notification were
misclassified.

Although the accuracies of the baseline classifier and the C4.5 classifier look quite
similar, the C4.5 classifier has the overall better performance. While the baseline
classifier is unable to predict a single opportune moment, the C4.5 classifier predicts



257 opportune moments accurately. The calculated Kappa statistic of 0.17 and the
receiver operating characteristic, area under curve (ROC AUC), of 0.72 indicate that this
classifier is not performing outstandingly well, but is definitely better than the baseline
condition.

Alternative classifiers didn't perform better: a JRip classifier reached 77.48 % (precision
0.74, recall 0.77), and a neural network reached 76.84 % (precision 0.73, recall 0.77) in
a similar evaluation procedure. The overall accuracy of all classifiers is comparable to
existing classifiers for office settings [3].

Discussion

In the following we discuss how these results should be interpreted and what are the
practical and theoretical limitations of the identified model. Again, we want to
emphasize that our set of sensors is unable to measure all aspects that make a mobile
situation. Consequently, our findings are only valid for this simplified view on the
context.

Trigger Notifications at the Right Time

In the statistical analysis we could observe that the average time of day for answered
notifications, 14:16, is significantly later than for ignored notifications, 12:12. Further,
the answering rate decreases significantly during nighttime. Two leaves of the decision
tree, which classify a notification likely to be answered, have a time node as predecessor.
Thus, time seems to be a good predictor.

A combination of both, statistics and decision tree, implies that the ideal time to trigger a
notification is before 08:21, after 20:20, but not during nighttime. These times appear
logical if we compare them with a typical 9-to-5 working day. Notifications are likely to
be answered after getting up, during breakfast or during the commute in the morning.
Further, they are likely to be answered when the user is back at home, and the working
day is over.

Trigger Notifications When Users Hold the Phone in Their Hands

The identified average pitch angle for answered notifications indicates that the users
often already held the phone in their hands when answering a notification. Further, the
proximity sensor is significantly less often covered for answered notifications. The
derived decision tree is able to reach a high accuracy with pitch and proximity as two
important identifying measures. Particularly the fact that 3660 (55.61 %) notifications
with a pitch angle greater than -13.12° are classified as unlikely to be answered is
particularly remarkable (see Figure 4). We interpret these measures, i.e., pitch and
proximity, as an indicator that notifications are more likely to be answered if the users
already hold the phone in their hands. This is the most relevant aspect to predict
whether a notification will be answered or not.

Relevance and Applicability of the Model in Practice

From a technical perspective, the derived model can be transferred into simple
comparisons, which can be executed on today’s mobile phones. This makes an
application feasible and probable. The presented model gives a basic recommendation
in which situations a notification is likely to be answered and in which not. As explained,
the approach is limited by the fact that we just measure and include a tiny fragment of
the overall context. The identified performance measures indicate that the predictions
of the simplified model are only a medium improvement over random predictions. That



means that still a considerable number of notifications will probably occur in
inopportune moments. Consequently, we think it will be beneficial to further improve
the model before application.

We think that our model can serve as a starting point for less simplified models, which
incorporate more complex relationships and constraints between individual predictors.
These advanced models will probably lead to an increased prediction accuracy and,
eventually, to a generalizability among use-cases and an applicability of the approach in
everyday life. In addition, given how different a daily routine can be among users, we
think it would be beneficial to have user-specific models.

Further, also notifications have different characteristics that can be considered. One
example is the relevance of a notification for the user. For particularly relevant,
important or time-critical notifications the model, as presented here, is hardly
applicable. To make it applicable, much more information about the users and their
tasks need to be collected and incorporated. Further, the model needs to be integrated
into a complex notification management framework, like sketched by Igbal et al. [15],
that is responsible to issue a notification at opportune moments, but follows a complex
set of dynamic constraints.

We think that the resulting model can also be applied and used beyond mediated
interruption techniques. For example, we can think about a negotiated interruption
technique, where the user's choice if a notification should be handled right away or later
can be used to re-fine the model at runtime. This approach would allow the model to
adapt to changing user contexts, e.g., if the user starts a new job or moves to a new city
and then follows other daily routines.

Limitations

One limitation for large-scale studies via mobile applications is the data validity.
Although we did sanity checks, erroneous data samples might still affect the analysis.
Further, we cannot say anything about the users' motivation to answer or ignore/reject
notifications. Thus, it could be the case that a user ignores a notification although it was
issued in an actual opportune moment, thereby influencing our findings. However, we
argue that this is regularly not the case and for the majority of the recorded data the
user is behaving as initially expected.

Conclusion

In this work we have studied in which contexts a mobile notification is attended and in
which it is rejected or ignored. We did so by publishing the mood-tracking application
MoodDiary in the Google Play store, where we collected 6581 notifications from 79
users over periods of up to 76 days. This approach gives our studies the advantage that
they are done in a real, longitudinal, and large-scale setting, which is beneficial for the
results' validity and which is something that has not been done before in interruption
research.

We analyzed the notifications from a statistical perspective and did a data mining
analysis. We identified that notifications should be triggered at the right time and when
the device is already at hand. We illustrate that our derived classifier can be applied
already, but a surrounding notification management framework and less simplified



models would be helpful to achieve a practical value in day-to-day use. We envision that
the applied model can lead to a substantial decrease of notifications in inopportune
moments, which therefore reduces the number of annoying and unpleasant
interruptions at no costs. This eventually leads to fewer context switches and therefore
to less stress, frustration, time pressure and effort [1].

In our future research we want to investigate the actual application of the derived
generic model and compare it against user-specific models. Further, we plan to
incorporate non-sensor information, like phone activities or calendar entries, in future
model revisions. Eventually, we want to embed the model in a holistic notification
management framework to investigate options how urgent notifications can be treated.
All future work will be done to pursue the objective to further improve the user
experience.
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